DAUERHAFTIGKEITSUNTERSUCHUNGEN AN TROCKEN-UND NASSSPRITZBETONEN MIT MINERALISCHEN ZUSATZSTOFFEN

INVESTIGATIONS ON THE DURABILITY OF DRY- AND WET-MIX SPRAYED CONCRETE WITH MINERAL ADDITIONS

Florian **Steindl**, Institut für Angewandte Geowissenschaften, TU Graz, Österreich Isabel **Galan**, Institut für Angewandte Geowissenschaften, TU Graz, Österreich Andre **Baldermann**, Institut für Angewandte Geowissenschaften, TU Graz, Österreich Marlene **Sakoparnig**, Institut für Materialprüfung u. Baustofftechnologie, TU Graz, Österreich Martin **Dietzel**, Institut für Angewandte Geowissenschaften, TU Graz, Österreich Rudolf **Röck**, Institut für Konstruktion und Materialwissenschaften, Universität Innsbruck Wolfgang **Kusterle**, Ostbayerische Technische Hochschule Regensburg, Deutschland Florian **Mittermayr**, Institut für Materialprüfung und Baustofftechnologie, TU Graz, Österreich

Die Dauerhaftigkeit von Spritzbeton kann, insbesondere in seiner Verwendung als Stütz- und Ausbaumaterial im Tunnelbau, durch chemische Angriffe deutlich herabgesetzt werden. Im Forschungsprojekt "Entwicklung neuer dauerhafter und nachhaltiger Spritzbetone (ASSpC)" wurden Prüfkörper von Trocken- und Nassspritzbetonen in Großspritzversuchen hergestellt. Der Sulfatwiderstand und das Lösungsverhalten der Betone in sulfathaltigen wässrigen Lösungen wurden mit drei Testverfahren bestimmt und die Ergebnisse miteinander verglichen: Ein Pulvertestverfahren zeigt die Auflösung von Zementhydratphasen zugunsten der Neubildung von Calcit und Ettringit. Das Ausmaß der Sulfatdehnung an Bohrkernen, ermittelt im zweiten Testverfahren, korrespondiert mit dem chemischen Verhalten des gemahlenen Materials, insbesondere bezüglich der Reaktivität von calcium- und aluminiumhaltigen Hydratphasen. Der Thaumasitwiderstand, ermittelt über Masseverlust von Prüfkörpern, zeigte eine weitgehende Übereinstimmung mit den zuvor genannten Tests. Die Verwendung von hochreinen Metakaolinen (7-10 M-% des Bindemittels) oder Feinstcalcit (5-10 M-% des Bindemittels) allein führte insgesamt zu deutlich geringerer Sulfatbeständigkeit. Hingegen konnten hohe Gehalte an Hüttensand oder Silikastaub auch in Kombination mit Metakaolin und Feinstcalcit den Sulfatwiderstand von Spritzbeton erhöhen.

The durability of shotcrete can be degraded by chemical attacks, especially if used as ground support in tunnel construction. In the course of the research project "Advanced and Sustainable Sprayed Concrete (ASSpC)" test specimens of dry-mix and wet-mix shotcrete were sprayed in large-scale tests. The sulfate resistance and the leaching behaviour of these shotcretes were assessed in sulfate-bearing solutions. A test procedure based on the use of shotcrete powders shows that hydrated cement phases dissolve in favour of calcite and ettringite neo-formation. The sulfate expansion measured on drill cores in the second procedure corresponds to the behaviour of the powders, especially regarding the reactivity of calcium- and aluminium-bearing hydrated phases. The resistance against thaumasite attack, assessed by measuring the mass loss of prisms, coincides with the former test results. The exclusive use of high-purity metakaolin (7-10 wt-% of binder) or fine calcium carbonate (5-10 wt-% of binder) leads to a decrease in the sulfate resistance of shotcrete even when used in combination with metakaolin or fine calcium carbonate.

1. Sulfatbeständigkeit von Spritzbeton

Moderne Spritzbetone müssen hohen Dauerhaftigkeitsanforderungen entsprechen, um Ansprüche an lange Betriebslebensdauern von mehreren Jahrzenten [1] erfüllen zu können. Hydratisierte Zementphasen des Spritzbetons können in Kombination mit externen Sulfatquellen, wie zum Beispiel sulfathaltige Grund- und Bergwässer, durch Lösungs- und Ausfällungsvorgänge in sekundäre unerwünschte Sulfatverbindungen wie Ettringit, Gips oder Thaumasit umgebildet werden. Abhängig von den chemischen und mikrostrukturellen Eigenschaften des Spritzbetons und den Umweltbedingungen können diese Neubildungsprozesse die Zementmatrix schädigen, was zu Festigkeitsverlust, Expansion und im Extremfall Kohäsionsverlust des Spritzbetons führt. Während die expansive Wirkung von Ettringit vor allem durch die Umwandlung von AFm-Phasen in kleinen Porenräumen durch hohe Kristallisationsdrücke hervorgerufen wird [2,3], schädigt die Bildung von Thaumasit den Zementstein durch die Umwandlung festigkeitsgebender C-S-H-Phasen bei zusätzlicher Verfügbarkeit einer Karbonatquelle (z.B. Gesteinskörnung, Grundwasser oder Atmosphäre) [4].

Naturgemäß unterscheiden sich die chemischen und strukturellen Eigenschaften von Spritzbeton deutlich von Normalbeton und von im Labor hergestellten, beschleunigten oder unbeschleunigten Leimen oder Mörteln, zum Beispiel durch die Einflüsse der Beschleunigerzugabe [5], der Gesteinskörnung [6] oder des Spritzvorgangs [7]. Spritzbeton ist durch den Auftrag auf das Lockergestein oder den Fels und den Einsatzort im Tunnel öfter in Kontakt mit chemisch aggressiven Lösungen [8,9] und anfälliger für Schwindrisse [10]. Diese Faktoren wirken sich auf die Dauerhaftigkeit aus, weshalb sich die Sulfatbeständigkeit von Spritzbeton deutlich von Normalbeton [6,11] unterscheidet und am besten an gespritzten Proben, zum Beispiel aus Großversuchen, geprüft werden sollte.

Um die (Früh)Festigkeit, Dauerhaftigkeit und Nachhaltigkeit von Spritzbeton zu erhöhen, werden vermehrt wirksame Zusatzstoffe wie Hüttensand (HÜS), Silikastaub (SF), feines Calciumcarbonat (FCC), Metakaolin (MK) oder Kombiprodukte (z.B. AHWZ, ein Kombiprodukt aus HÜS, FCC und Flugasche) verwendet, um den Klinkergehalt teilweise zu ersetzen. Allerdings ist der Einfluss dieser Zusatzstoffe auf die Sulfatbeständigkeit von Spritzbeton teilweise noch unzureichend erforscht.

In diesem Beitrag wird die Prüfung der Sulfatbeständigkeit mehrerer Trocken- und Nassspritzbetone aus Großspritzversuchen anhand von 3 verschiedenen Testmethoden vorgestellt. Einerseits wurde mit einem Pulvertest die chemische Anfälligkeit der Spritzbetone für Ettringitbildung charakterisiert und andererseits wurde die Schädigung von Bohrkernen und Prismen durch Längenänderung bzw. Thaumasitbildung geprüft. Dadurch ist es möglich, entscheidende chemische Einflussfaktoren auf die Sulfatbeständigkeit von Spritzbeton zu bestimmen.

2. Material und Methoden

Sieben Trocken- und acht Nassspritzbetone wurden in Großspritzversuchen unter Verwendung dolomitischer Gesteinskörnung hergestellt. Die Versuchsabläufe sind im Detail in [12] und [13] beschrieben. Für Trockenspritzbetone wurde aus 40 kg Bindemittel und 210 kg Gesteinskörnung ein Trockenmischgut hergestellt (entspricht 367 ± 7 kg/m3 Bindemittel). Für Nassspritzbetone wurde Nassmischgut aus 1860 ± 50 kg/m3 Gesteinskörnung, 404 ± 7 kg/m3 Bindemittel und Wasser mit einem Wasser/Bindemittel-Verhältnis (W/B) von 0,48 \pm 0,03 unter Zugabe eines PCE-basierten Fließmittels (1 M-% des Bindemittels) gemischt. Für die Mischungen wurde bei Trockenspritzbeton ein Spritzzement gemäß Richtlinie Spritzbeton [14] und bei Nassspritzbeton ein CEM I 52.5 R sowie CEM I 52.5 N SR0 gemäß EN 197-1 [15], fortan als CEM I und CEM I SR0 bezeichnet, eingesetzt. Zur Beschleunigung der Nassspritzbetone wurde ein, durch eine Schlauchquetschpumpe geförderter auf Aluminiumsulfat basierter, alkalifreier Erstarrungsbeschleuniger (Feststoffgehalt 55%; pH 2,5; Dichte 1,44 g cm⁻³) eingesetzt. Die Zusammensetzungen der Bindemittel sind in den Tabellen 1 und 2 aufgelistet. Für die chemisch-mineralogische Zusammensetzung der Ausgangsstoffe sei auf Tabelle 4 im Anhang verwiesen. Die Betone wurden bei Temperaturen von 22 bis 25°C mit einer CIFA Magnum MK 24 Spritzpumpe mit Hittmayr-Wechselsystem HSM-1 in Spritzkisten mit einer Größe von etwa 50x50x20 cm³ gespritzt, aus denen nach 24 Stunden Bohrkerne gezogen und für mindestens 90 Tage bei 20°C in Wasser gelagert wurden. Aus diesen wurden dann die Prüfkörper (Bohrkerne und Prismen) gebohrt bzw. geschnitten, wobei äußere Bereiche ausgespart wurden.

Rezeptur	Spritz- zement	HÜS	AHWZ	МК	W/B	
•		-				
T1	100%	-	-	-	0,54	
T2	84%	-	16%	-	0,57	
Т3	90%	10%	-	-	0,57 0,55	
Τ4	80%	20%	-	-		
Т5	90%	-	-	10%	0,54	
Т6	70%	30%	-	-	0,53	
T7	80%	10%	-	10%	0,56	

Tabelle 1: Bindemittelzusammensetzung (HÜS..Hüttensand, AHWZ...Kombiprodukt, MK...Metakaolin) und W/B-Wert der geprüften Trockenspritzbetone T1-T7.

*für N8 kann aufgrund schlechterer Spritzbarkeit die Beschleunigerdosierung nur geschätzt werden.

	CEM I	CEM I CEM I HÜS SRO		AHWZ	FCC1	FCC1 FCC2		МК	EB	W/B
Rezeptur		M% relativ	M% relativ							
		zum								
									Bindemittel	
N1	-	100%	-	-	-	-	-	-	8.0%	0,48
N2	67%	-	-	33%	-	-	-	-	7.9%	0,45
N3	-	90%	-	-	-	10%	-	-	7.3%	0,46
N4	95%	-	-	-	-	5%	-	-	8.2%	0,47
N5	55%	-	16%	-	10%	13%	7%	-	6.9%	0,46
N6	-	60%	18%	-	-	15%	7%	-	10.6%	0,45
N7	55%	-	16%	-	10%	13%	-	7%	8.1%	0,51
N8	-	70%	20%	-	-	10%	-	-	7.0-8.0% *	0,47

Für jede Mischung wurde ein Teil der Probekörper in einem Unterdruckschrank bei 300 mbar und 22±2° C getrocknet und mithilfe einer Scheibenschwingmühle für einen Pulvertest der Sulfatbeständigkeit [15] zerkleinert ($\leq 125 \mu m$). Die Spritzbetonpulver wurden für 7 Tage einer 1 M%-igen Na₂SO₄-Lösung ausgesetzt, wobei die Lösungszusammensetzung regelmäßig durch pH- und Leitfähigkeitselektroden (SenTix41 bzw. TetraCon325), Ionenchromatographie

Tabelle 2: Bindemittelzusammensetzung (FCC...feines Calciumcarbonat, SF...Silikastaub), Dosierung des Erstarrungsbeschleunigers (EB) und W/B-Wert der geprüften Nassspritzbetone N1-N8.

(IC, Dionex ICS 3000) und optische Emissionsspektroskopie mit induktiv gekoppeltem Plasma (ICP-OES, PerkinElmer Optima 8300) untersucht wurde. Danach wurden die Suspensionen abfiltriert und der Filterrückstand bei 40°C für 7 Tage getrocknet. Vor und nach dem Test sind die chemische und mineralogische Zusammensetzung der im Mörser gemahlenen Pulver mittels Röntgenfluoreszenzanalyse (RFA, Philips PW 2404, Lithiumborat-Schmelztabletten) und Röntgendiffraktionsanalyse (RDA, PANalytical X'Pert PRO, Co-K_a-Strahlung) bestimmt worden. Die RDA-Analyse erfolgte durch Rietveld-Verfeinerung mit PANalytical Highscore Plus und der Strukturdatenbank ICSD.

Mit 6 Bohrkernen pro Rezeptur wurde ein Längenänderungstest in einer leicht modifizierten Version gemäß SIA 262/1:2013 [16] durchgeführt. Die Bohrkerne (ca. 130 mm lang, 23,5 mm Durchmesser) wurden zuerst 5 Trocknungszyklen unterzogen (jeweils 5 Tage Trocknung bei 50°C und 2 Tage Lagerung in einer 5 M%-igen Na₂SO₄-Lösung) und dann weitere 16 Wochen in der Lösung gelagert, für eine gesamte Auslagerungsdauer von 147±1 Tagen.

Zu Beginn der Prüfung wurden Länge, Masse und Volumen der Bohrkerne bestimmt. Während der Prüfung wurden regelmäßig die Masse und die Länge der Bohrkerne bestimmt, um die Massen- und Längenänderung über die Prüfdauer inklusive Standardabweichung berechnen zu können.

Mit den Prismen (ca. 45x45x70 mm³) wurde ein Tieftemperatur-Auslagerungstest durchgeführt. Dazu wurden die Prismen bei 5°C in einer 2,16 M%-igen Na₂SO₄-Lösung mit Gips und Calcit im Überschuss gelagert (entspricht etwa 15 g/l SO₄²⁻), bei einem Volumenverhältnis von Lösung zu Feststoff von ca. 10:1. Die Prüfung wurde über eine Dauer von 540±10 Tagen durchgeführt, wobei die Lösung in regelmäßigen Abständen von 28±1 Tagen getauscht wurde.

Die Prismen wurden vor dem Beginn der Prüfung abgewogen und abgemessen und am Ende der Prüfung mit einer Messingbürste abgebürstet und erneut gewogen, wodurch ein Massenverlust bestimmt wurde. Zusätzlich wurde das Voranschreiten der Schädigung der Prismen optisch dokumentiert.

3. Ergebnisse und Diskussion

3.1 Pulvertest

Im Zuge der Auslagerung der Pulver in der Na₂SO₄-Lösung kam es zu chemischen und mineralogischen Änderungen (siehe auch Tabellen 5 und 6 im Anhang). Mittels RFA kann gezeigt werden, dass der Gehalt an CaO und der Glühverlust sanken, während der SO₃-Gehalt stieg (Bild 1). Diese chemischen Unterschiede wurden durch mineralogische Änderungen hervorgerufen, wie RDA zeigt: Der Anteil an Calcit und Ettringit in den reagierten Proben stieg im Vergleich zum trocken gelagerten Ausgangsmaterial an, während AFm-Phasen, unhydratisierte Klinkerphasen und amorphe Anteile (z.B. C-(A)-S-H) abnahmen und Portlandit aufgelöst wurde (Bild 1).

Während Pulver von Nassspritzbetonen aufgrund der Beschleunigerzugabe bereits im Ausgangsmaterial Ettringit aufwies, enthielten die Trockenspritzbetone keinen Ettringit. Bei den Trockenspritzbetonen wurde in den Rezepturen T5 und T7 und bei den Nassspritzbetonen in den Rezepturen N5 und N7 am meisten Sulfat aus der Lösung aufgenommen. Die Trockenspritzbetone nahmen generell mehr Sulfat auf und bildeten mehr Ettringit als die Nassspritzbetone.

Bild 1: Änderung der chemisch-mineralogischen Zusammensetzung der untersuchten Spritzbetonpulver während der Lagerung in der Sulfatlösung.

Die hydrochemischen Eigenschaften der wässrigen Anteile der Suspensionen, wie der pH-Wert und die wässrigen Ionenkonzentrationen, zeigten systematische Vorläufe über den Zeitraum der Experimente (Bilder 2 und 3). Während die Konzentrationen von SO₄²⁻- und Al-Ionen sanken, stiegen die Konzentrationen von Ca²⁺ und der pH-Wert zunächst stark an, nach etwa 2-6 Stunden sank die Ca²⁺-Konzentration bis zum Ende des Experiments wieder ab. Die Ca²⁺-Konzentration erreichte deutlich höhere Werte bei Rezepturen mit wenig Zusatzstoffen (\leq 16 M-%) im Bindemittel (T1, T2, T3 und N1, N3, N4), was auf das Vorhandensein leicht löslicher Ca-Verbindungen, z.B. größerer Mengen Portlandit, hinweist (vgl. auch Tabellen 5 und 6). Hingegen war bei den Mischungen mit größeren Mengen (\geq 16 M-%) an hydraulisch oder puzzolanisch wirksamen Zusatzstoffen oder mit \geq 10 M-% Metakaolin im Bindemittel eine deutlich geringere Ca²⁺-Konzentration zu sehen.

Die beobachteten chemischen Entwicklungen der reaktiven Lösungen werden durch die Reaktion der Pulver in der Na₂SO₄-Lösung hervorgerufen: Die Auflösung von Portlandit, AFm-Phasen, C-(A)-S-H und Klinkerphasen (siehe Bild 1 und Tabellen 5 und 6) bewirkt einen schnellen Anstieg der wässrigen Ca²⁺- und Al-Konzentration und des pH-Werts. Zusätzlich wird durch den hohen pH-Wert von 11,3-12,5 CO₂ aus der Atmosphäre in die Lösungen absorbiert. Durch die Ausfällung von Ettringit und Calcit werden fortlaufend Ca²⁺, Al³⁺, CO₃²⁻ und SO42- aus der Lösung entfernt. Durch die hydrogeochemische Modellierung der Reaktionslösungen mit dem Programm PHREEQC [17,18] wurden die Sättigungsindizes (SI) von Portlandit, C-S-H, Calcit und Ettringit berechnet (Bilder 2 und 3). SIPortlandit und SIC-S-H sind über den Verlauf des gesamten Experiments negativ, die Lösung ist somit an diesen Phasen untersättigt und diese werden dem Modell entsprechend aufgelöst. Hingegen sind SI_{Calcit} und SI_{Ettringit}, mit wenigen Ausnahmen, über den Verlauf des gesamten Experiments positiv. Die Lösungen sind somit an Calcit und Ettringit übersättigt und diese sollten sich aus der Lösung bilden, was auch durch die Analyse der reagierten Festphasen bestätigt werden kann. Das hydrochemische Modell bestätigt folglich die Interpretation des mineralogischen Befunds, der eine Auflösung von Portlandit und eine Reduktion des amorphen Anteils (als Indikator für C-(A)-S-H) und eine Neubildung von Calcit und Ettringit anzeigt.

Bild 2: Chemische Eigenschaften (Ionenkonzentrationen, pH-Wert, Sättigung von relevanten Phasen) der experimentellen Lösungen mit den Trockenspritzbetonpulvern.

Bild 3: Chemische Eigenschaften (Ionenkonzentrationen, pH-Wert, Sättigung von relevanten Phasen) der experimentellen Lösungen mit den Nassspritzbetonpulvern.

3.2 Längenänderungstest

Die Bohrkerne aller Mischungen nahmen über den Verlauf der Prüfung an Masse und Länge zu (Bild 4). Während der 35 Tage dauernden abwechselnden Trocknungs- und Auslagerungs- zyklen fand noch keine signifikante Längenänderung statt, aber die Bohrkerne nahmen bereits an Masse zu. Diese anfängliche Massenzunahme wird vermutlich durch kapillares Saugen mit anschließender Aufkonzentration der Na₂SO₄-Lösung in den Poren durch Verdunstung während des Trocknungszyklus verursacht.

Bild 4: Massenzunahme (bezogen auf das Bohrkernvolumen) und Längenänderung (bezogen auf die Bohrkernlänge) der geprüften Trocken- und Nassspritzbetone im Längenänderungstest. * kennzeichnet Rezepturen, bei denen die Bohrkerne vor Ende der Prüfung zerbrachen, was weitere Messungen unmöglich machte.

Während der weiteren Auslagerung (ab 35 Tagen bis zum Ende der Prüfung) erfolgte die Massenzunahme über die Zeit dann gleichbleibend oder, im Fall der Nassspritzbetonrezepturen, zunehmend langsamer. Allerdings trat eine deutliche Längenänderung bei allen Rezepturen auf. Bohrkerne der Rezepturen T1, T2, T3 und N4 (mit ≤ 16 M-% Zusatzstoffen im Bindemittel) und T5, T7 und N7 (\geq 7 M-% MK im Bindemittel) zeigten die schnellste Längenänderung und wiesen am Ende der Prüfung die höchsten Dehnungen (>2,6 mm/m) und sichtbare Schäden in Form von Rissen auf. Die Bohrkerne der Mischung T2 wurden stark geschädigt. Die Bohrkerne der Mischungen T5 und T7 zerbrachen vollständig bei Erreichen einer Dehnung von etwa 5-8 mm/m. Im Gegensatz dazu wiesen T4, T6, N1, N2, N3, N5, N6, und N8 (mit \geq 16 M-% Zusatzstoffen oder, bei N1, mit CEM I SR0) nur sehr geringe Dehnungen von < 1,5 mm/m auf, und die Kerne zeigten keine sichtbaren Schäden am Ende der Prüfung.

Die Abhängigkeit der Dauerhaftigkeit von der Zusammensetzung des Bindemittels zeigt sich auch bei Berücksichtigung des ermittelten Al₂O₃-Gehalts der Rezepturen. Mischungen mit wenigen Zusatzstoffen oder mit Metakaolin (T1, T2, T3, T5, T7, N4, N7) zeigten steigende Längenänderungen mit steigenden Al₂O₃-Gehalten (entlang der orangen Linie in Bild 5). Andererseits wiesen Mischungen mit HÜS und wenig MK (T4, T6, N2, N8), trotz der hohen Al₂O₃-Gehalte, nur geringe Längenänderungen auf (grüne Linie in Bild 5). Diese Unterschiede sind vermutlich auf unterschiedliche Al-haltige Hydratphasen zurückzuführen: Klinkerphasen und Metakaolin bilden während der Hydratation vermutlich reaktivere AFm- und C-(A)-S-H-Phasen, die anschließend mit Sulfat und gelöstem Ca²⁺ zu Ettringit reagieren können. Hingegen kommt es bei der Hydratation von Hüttensand zur Bindung von Al in weniger reaktiven Phasen wie z.B. Hydrotalcit oder C-(A)-S-H mit niedrigem Ca/Si-Verhältnis. Der Al₂O₃-Gehalt allein ist demnach für moderne Spritzbetone mit Zusatzstoffkombinationen für die Prognose der Sulfatbeständigkeit nicht (mehr) ausreichend.

Bild 5: Gegenüberstellung des Al₂O₃-Gehalts und der Längenänderung von Trocken- und Nassspritzbetonen. Die Werte für T2, T5 und T7 wurden für 147 Tage extrapoliert, da die Kerne schon vor Ende der Prüfung zerbrachen. Die gestrichten Linien markieren Mischungen mit steigender (orange) bzw. gleichbleibender (grün) Längenänderung

Der beobachtete negative Einfluss von Metakaolin auf die Sulfatbeständigkeit von Spritzbeton widerspricht bisherigen Arbeiten, die eine positive Wirkung von Metakaolin auf die Sulfatbeständigkeit von Normalbeton zeigten [19,20]. Dies könnte einerseits auf die chemischen und physikalischen Besonderheiten von Spritzbeton zurückzuführen sein (z.B. beschleunigte Aluminathydratation, geringe Porosität durch Verdichtung, siehe Kapitel 1), andererseits könnte durch die zyklische Trocknung auch die Aufnahme von Sulfat besonders verstärkt worden sein.

3.3 Thaumasit-Prismenauslagerung

Über den Verlauf des Prismenauslagerungstests wurde bei den Prismen der meisten Rezepturen das vermehrte Auftreten oberflächlicher Schäden in der Form von Rissen und blättrigen Absplitterungen beobachtet (Tabelle 3). Da die Bedingungen der Prüfung (niedrige Temperatur, hohe Sulfatkonzentration, Calcit und Atmosphäre als Karbonatquellen) die Entstehung von Thaumasit begünstigen, ist davon auszugehen, dass zumindest ein Teil der verursachten Schäden durch Thaumasitbildung verursacht wird, was durch RDA-Untersuchungen von geschädigtem Material der Mischung N4 bestätigt werden konnte. Im Fall der Rezepturen T5, N1, N3 und N4 kam es auch zu größerem Materialverlust durch Abbrechen von Ecken und Kanten. Nur die Mischungen N5 und N6 (beide als einzige mit 7 M-% Silikastaub im Bindemittel) blieben gänzlich ohne sichtbare Schädigung. Für die Mischung T1 konnte wegen Materialknappheit keine Prüfung durchgeführt werden.

		Trockenspritzbeton		Nassspritzbeton				
Nr.	Massen- verlust	Beurteilung	Nr.	Massen- verlust	Beurteilung			
T1	-	-	N1	-9,4%	sehr stark, Ecken und Kanten abgebrochen			
T2	-2,5%	deutlich, Risse und Absplitterungen	N2	-2,6%	deutlich, Risse und Absplitterungen			
Т3	-1,6%	deutlich, Risse und Absplitterungen	N3	-16,4%	sehr stark, Ecken und Kanten abgebrochen			
T4	0,0%	wenig, Risse an Ecken und Kanten	N4	-68,4%	extrem, viel Material abgebrochen			
T5	-9,5%	sehr stark, Ecken und Kanten abgebrochen	N5	0,8%	keine sichtbar			
T6	-1,0%	deutlich, Risse und Absplitterungen	N6	0,5%	keine sichtbar			
T7	-0,3%	deutlich, Risse und Absplitterungen	N7	-1,4%	deutlich, Risse und Absplitterungen			
			N8	0,6%	wenig, Risse an Ecken und Kanten			

Tabelle 3: Massenverlust und optische Schädigung von Trocken- und Nassspritzbeton im Prismen-Auslagerungstest.

Bild 6: Vergleich ausgewählter Prismen (nach Auslagerung) von T4 (0,0% Masseverlust) und T5 (-9,5% Masseverlust) bzw. N3 (-16,4% Masseverlust) und N6 (0,5% Massenzunahme).

Der am Ende der Prüfung festgestellte Massenverlust der Prüfkörper spiegelt das optische Schädigungsbild gut wider (Tabelle 3). Die größten Massenverluste wurden an den am stärksten geschädigten Prismen von T5, N1, N3 und N4 gemessen (alle mit \leq 10 M-% Metakaolin oder feinem Kalksteinmehl im Bindemittel). Demgegenüber stehen die Mischungen T4, T6, T7, N5, N6 und N8 (\geq 20 M-% Zusatzstoffe, darunter HÜS, im Bindemittel) mit weniger als -1 % Masseverlust. Auch T2, T3 und N2 mit 10 M-% HÜS bzw. 16-33 M-% AHWZ zeigten deutlich geringere Massenverluste (-2,6 bis -1,6 %). Insbesondere im Fall von N5, N6 und N8 nahm die Masse der Prismen sogar geringfügig zu, vermutlich durch die schadlose Aufnahme von Sulfat oder geringfügige Nachhydratation der Zusatzstoffe.

3.4 Vergleich der Testergebnisse

Die Rezepturen, die im Pulvertest am meisten Sulfat aufgenommen haben, zeigen auch die stärkste und schnellste Längenänderung (T5 und T7 bzw. N4 und N7). Ein Vergleich der Werte für die Längenänderung mit der Sulfataufnahme im Pulvertest zeigt einen exponentiellen Anstieg der Längenänderung bei steigender Sulfataufnahme (siehe Bild 7) für Trocken- und Nassspritzbeton. Dieser Zusammenhang ist vermutlich darauf zurückzuführen, dass bei steigender Sulfataufnahme auch die Bildung von Rissen und Brüchen zunimmt, was wiederum das Eindringen sulfathaltiger Lösung beschleunigen und verstärkte Dehnung verursachen kann [21]. Eine Grenze, ab der diese selbstverstärkende Expansion auftritt, wurde bei etwa 1,5 mm m⁻¹ festgestellt (grüne Linie in Bild 7). Dies entspricht etwa einer SO₃-Aufnahme von 1,7 M-% für Trockenspritzbeton und 0,85 M-% für Nassspritzbeton.

Bild 7: Vergleich der Längenänderung von Bohrkernen mit der SO₃-Aufnahme von Pulvern. Die Werte für T2, T5 und T7 wurden extrapoliert, da die Kerne schon vor Ende der Prüfung zerbrachen. Sowohl für Trocken- als auch Nassspritzbeton steigt die Längenänderung annähernd exponentiell mit dem aufgenommenen SO₃. Die grüne gepunktete Linie markiert eine Längenänderung von 1,5 mm m⁻¹.

Die SO₃-Aufnahme im Pulvertest und die Expansion im Längenänderungstest sind maßgeblich auf die Bildung von Ettringit zurückzuführen. Deshalb wurden vor allem Rezepturen mit hohen Gehalten an reaktiven Al-Hydratphasen geschädigt (T5, T7, N4, N7) (siehe Kapitel 3.2). Im Gegensatz dazu wird im Prismentest durch die geringeren Temperaturen auch die Bildung von Thaumasit begünstigt. Hier wurden vor allem Mischungen mit geringen Mengen an wirksamen Zusatzstoffen geschädigt. Das Vorhandensein von Metakaolin spielte hingegen nur eine untergeordnete Rolle. Spritzbetone mit SR0-Zement zeigten, im Gegensatz zum Längenänderungstest, keine maßgeblich höhere Dauerhaftigkeit, da auch die Prismen der Mischungen N1 und N3 (beide mit ≥ 90 M-% CEM I SR0 im Bindemittel) deutliche Massenverluste und Schädigungen aufwiesen (vgl. starke Schädigung von N3 in Bild 6).

Generell wurden deutliche Unterschiede im Verhalten der untersuchten Trocken- und Nassspritzbetonen in den Prüfungen festgestellt; beispielsweise zeigten Trockenspritzbetone im Durchschnitt eine höhere Längenänderung, und Trockenspritzbetonpulver nahmen mehr Sulfat auf als Nassspritzbetone, selbst wenn die Längenänderung gering und die Zusatzstoffmenge günstig war (z.B. Rezepturen T4 und T6). Dieses unterschiedliche Verhalten ist vermutlich auf chemische Unterschiede der Spritzbetone zurückzuführen, zum Beispiel auf den höheren W/B-Werten und geringeren Bindemittelgehalten der Trockenspritzbetone und die Verwendung von Spritz-Bindemittel, dessen niedrige Sulfatisierung zur verstärkten Bildung von AFm-Phasen statt Ettringit führt [22]. Zusätzlich kann auch die Verwendung von Erstarrungsbeschleuniger die chemische Zusammensetzung des Nassspritzbetons verändern. Außerdem könnte die erreichte Mahlfeinheit der Pulver aufgrund von Festigkeitsunterschieden bei Trockenspritzbeton höher sein.

4. Zusammenfassung

In dieser Studie wurde die Resistenz von 15 Spritzbetonrezepturen gegen externen Sulfatangriff und diesbezügliche Lösungserscheinungen untersucht. Durch einen Pulvertest konnte die chemische Sulfatbeständigkeit und das Lösungsverhalten charakterisiert werden. In einem Längenänderungstest wurde die Resistenz gegen expansiven Sulfatangriff, hauptsächlich in der Form von Ettringit-Neubildung, bestimmt. Durch Tieftemperatur-Auslagerung wurde die Resistenz der Mischungen gegen externen Sulfatangriff mit Thaumasitbildung getestet.

Auflösungs- und Wiederausfällungsprozesse ermöglichten die Umbildung von hydratisierten Zementphasen, wie Portlandit, C-(A)-S-H und AFm-Phasen, zu Calcit und Ettringit in Anwesenheit einer externen Sulfatquelle. Die notwendige Verfügbarkeit von Ca und Al für diesen Prozess wird von der Reaktivität der entsprechenden Ca- und Al-Phasen bestimmt, die wiederum von den verwendeten Zementen und Zusatzstoffen im Bindemittel abhängt. Es konnte gezeigt werden, dass die Verwendung aktiver Zusatzstoffe im Bindemittel geringere Portlandit-Gehalte und damit verbunden geringere Ca²⁺-Konzentrationen in der Lösung ermöglicht.

Die Sulfatbeständigkeit von Spritzbeton kann durch die Verwendung von Zusatzstoffen wie Hüttensand oder Silikastaub deutlich erhöht werden. Metakaolin hat in den untersuchten Mischungen den Portlandit-Gehalt deutlich verringert. Allerdings wurde durch Metakaolin, vermutlich durch die Bildung reaktiver Al-haltiger Hydratphasen, bei einer externen Sulfatquelle deutlich mehr Sulfat aufgenommen und dadurch die Resistenz gegen expansive Ettringitbildung herabgesetzt. Die Sulfatbeständigkeit von Spritzbetonrezepturen mit Metakaolin sollte demnach bei möglicher Sulfatexposition genau bestimmt und die Verwendung zusätzlichen Hüttensands in Betracht gezogen werden.

Die Verwendung von C₃A-armem CEM I SR0 konnte zwar die Beständigkeit gegen reine Längenänderung (expansive Ettringitbildung) erhöhen, für hohe Resistenz gegen Thaumasitangriff waren Bindemittel aus 100% CEM I SR0 aber unzureichend. Generell dürfte für eine hohe kombinierte Ettringit- und Thaumasitbeständigkeit von Spritzbeton die Verwendung von Zusatzstoffen, v.a. Hüttensand und Silikastaub, bei gleichzeitiger Limitierung des Metakaolin-Zusatzes ausschlaggebend sein.

Danksagung

Die Untersuchungen wurden im Rahmen des FFG-ÖBV-Forschungsprojektes ASSpC von der Österreichischen Forschungsförderungsgesellschaft (FFG 871055) und industriellen Partnern gefördert. Die Autoren möchten sich bei M. Hierz, A. Wolf, J. Jernei, S. Perchthold, S. Eichinger, D. Graf und G. Brunnsteiner für Analysen und Laborarbeiten und J. Juhart, L. Briendl und A. Saxer für fachliche Unterstützung bedanken. Wir danken dem anonymen Gutachter für die Durchsicht der Arbeit und die konstruktiven Anmerkungen.

5. Literatur

- Galan, I., Baldermann, A., Kusterle, W., Dietzel, M., Mittermayr, F.: Durability of shotcrete for ground support - review and update. Constr. Build. Mater., 202 (2019), 465–493.
- Kunther, W., Lothenbach, B., Scrivener, K.L.:
 On the relevance of volume increase for the length changes of mortar bars in sulfate solutions. Cem. Concr. Res., 46 (2013), 23–29.
- Müllauer, W., Beddoe, R.E., Heinz, D.:
 Sulfate attack expansion mechanisms. Cem. Concr. Res., 52 (2013), 208–215.
- [4] Rahman, M.M., Bassuoni, M.T.: Thaumasite sulfate attack on concrete: Mechanisms, influential factors and mitigation. Constr. Build. Mater., 73 (2014), 652–662.
- [5] Briendl, L.G., Mittermayr, F., Baldermann, A., Steindl, F.R., Sakoparnig, M., Letofsky-Papst, I., Galan, I.:

Early hydration of cementitious systems accelerated by aluminium sulphate: Effect of fine limestone. Cem. Concr. Res., 134 (2020), 106069.

- Paglia, C., Wombacher, F., Böhni, H., Sommer, M.:
 An evaluation of the sulfate resistance of cementitious material accelerated with alkali-free and alkaline admixtures: Laboratory vs. field. Cem. Concr. Res., 32 (2002), 665–671.
- Salvador, R.P., Cavalaro, S.H.P., Cano, M., Figueiredo, A.D.: Influence of spraying on the early hydration of accelerated cement pastes. Cem. Concr. Res., 89 (2016), 187–199.
- [8] Hagelia, P., Sibbick, R.G.: Thaumasite Sulfate Attack, Popcorn Calcite Deposition and acid attack in concrete stored at the «Blindtarmen» test site Oslo, from 1952 to 1982. Mater. Charact., 60 (2009), 686–699.
- [9] Mittermayr, F., Baldermann, A., Kurta, C., Rinder, T., Klammer, D., Leis, A., Tritthart, J., Dietzel, M.: Evaporation - A key mechanism for the theumasite form of sulfate attack. Com. Concr. Res

Evaporation - A key mechanism for the thaumasite form of sulfate attack. Cem. Concr. Res., 49 (2013), 55–64.

- [10] Ansell, A.: Investigation of shrinkage cracking in shotcrete on tunnel drains. Tunn. Undergr. Sp. Technol., 25 (2010), 607–613.
- [11] Lukas, W., Huber, H.:
 Sulfatbeständiger Spritzbeton f
 ür Straßentunnelauskleidungen. Straßenforschung, 192 (1982), 47–75.
- [12] Steindl, F.R., Mittermayr, F., Thumann, M., Juhart, J., Galan, I., Baldermann, A., Briendl, L., Sakoparnig, M., Röck, R., Kusterle, W.: Sulfate resistance of dry mix shotcretes with new binder composition. In: Gemrich, J. (Hrsg.): Proc. 15Th Int. Congr. Chem. Cem. (ICCC 2019), Research Institute of Binding Materials, Prague, Czech Republic, 2019.
- [13] Juhart, J., Briendl, L., Mittermayr, F., Röck, R., Thumann, M., Kusterle, W.: Mischungsentwicklung von nachhaltigem Spritzbeton mit kombinierten Zusatzstoffen. In: Nguyen, V.T.; Krüger, M.; Freytag, B.; Baldermann, C.; Schulter, D. (Hrsg.): 4. Grazer Betonkollogium, Verlag der Technischen Universität Graz, 2018.
- [14] Österreichische Vereinigung für Beton- und Bautechnik: Richtlinie Spritzbeton. Wien, 2009.

[15]	ÖNORM EN 197-1:2018:
	Zement. Teil 1: Zusammensetzung, Anforderungen und Konformitätskriterien von
	Normalzement. Wien, 2018.
[16]	SIA 262/1:2013:
	Betonbau - Ergänzende Festlegungen. Zürich, 2013.
[17]	Parkhurst, D.L., Appelo, C.A.J.:
	Description of input and examples for PHREEQC version 3 - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geol. Survery Tech. Methods, 6-A43 (2013), 1–497.
[18]	Lothenbach, B., Kulik, D.A., Matschei, T., Balonis, M., Baquerizo, L., Dilnesa, B., Miron, G.D., Myers, R.J.:
	Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali- activated materials. Cem. Concr. Res., 115 (2019), 472–506.
[19]	Shi, Z., Ferreiro, S., Lothenbach, B., Geiker, M.R., Kunther, W., Kaufmann, J., Herfort, D., Skibsted, J.:
	Sulfate resistance of calcined clay – Limestone – Portland cements. Cem. Concr. Res., 116 (2019), 238–251.
[20]	Sotiriadis, K., Mácová, P., Mazur, A.S., Viani, A., Tolstoy, P.M., Tsivilis, S.: Long-term thaumasite sulfate attack on Portland-limestone cement concrete: A multi-technique analytical approach for assessing phase assemblage. Cem. Concr. Res., 130 (2020), 105995.
[21]	Schmidt, T., Lothenbach, B., Romer, M., Neuenschwander, J., Scrivener, K.: Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements. Cem. Concr. Res., 39 (2009), 1111–1121.

[22] Galan, I., Briendl, L., Hoedl, M., Steindl, F., Juhart, J., Mittermayr, F.: Early hydration of dry-mix sprayed concrete. In: Proc. 1st Int. Conf. Innov. Low-Carbon Cem. Concr. Technol., London, United Kingdom, 2019.

Zu den Autoren

Florian Roman Steindl, MSc

Studium der Erdwissenschaften (Mineralogie und Kristallographie) an der Universität Wien, seit 2017 Doktoratsstudent und Universitätsprojektassistent am Institut für angewandte Geowissenschaften an der TU Graz

florian.steindl@tugraz.at

Dr. Isabel Galan

Studium der Physik und Materialwissenschaften, Doktorat an der Universität Complutense Madrid, Spanien, 2012-2016 PostDoc an der Universität Aberdeen, seit 2017 Postdoc am Institut für Angewandte Geowissenschaften an der TU Graz *igalangarcia* @tugraz.at

Marlene Sakoparnig, MSc

Studium der Erdwissenschaften (Hydrogeologie und Hydrogeochemie) an der Karl Franzens Universität Graz, seit 2017 Universitätsassistentin am Institut für Materialprüfung und Baustofftechnologie an der TU Graz

m.sakoparnig@tugraz.at

Dr. Andre Baldermann

Studium der Geowissenschaften an der Universität Greifswald, 2012- 2015 Doktorat und anschließend Post-Doktorat am Institut für Angewandte Geowissenschaften an der TU Graz baldermann@tugraz.at

Prof. Martin Dietzel Studium der Mineralogie an der Universität Göttingen, seit 2001 Professor für Mineralogie am Institut für Angewandte Geowissenschaften an der TU Graz *martin.dietzel@tugraz.at* Dr. Rudolf Röck

Studium Chemie und Physik an der Uni Innsbruck; Leiter F&E im Zementwerk Schretter&Cie; Postdoc Uni Innsbruck am Institut für Konstruktion und Materialwissenschaften *rudolf.roeck@uibk.ac.at*

Prof. Wolfgang Kusterle

Studium des Bauingenieurwesens an der Universität Innsbruck, Mitarbeit im Ingenieurbüro (Brückenbau), Dozent an der Universität Innsbruck. Beratungstätigkeit für Spritzbeton, Baustoffe im Tunnelbau, Betoninstandsetzung, Faserbetone, Brandschutz im Tunnelbau und Betontechnologie. 2001 bis 2020 Prof. an der OTH Regensburg *wolfgang@kusterle.net*

Dr. Florian Mittermayr

Studium der Geowissenschaften an der Universität Innsbruck, Doktorat an der TU Graz am Institut für Angewandte Geowissenschaften, seit 2013 am Institut für Materialprüfung und Baustofftechnologie an der TU Graz

f.mittermayr@tugraz.at

Anhang

RDA Phase (M%)	CEM I 52,5 R	CEM I 52.5 N SR0	Spritz- zement	HÜS	AHWZ	FCC1	FCC2	SF	МК
Calcit	4.7	3.9	0.5	1.2	17.1	95.5	95.5	-	-
Dolomit	1.4	-	0.8	-	-	4.1	3.9	-	-
Anhydrit	2.2	3.9	-	0.2	-	-	-	-	-
Bassanit	3.0	2.0	1.2	-	-	-	-	-	-
Gips	1.5	-	-	-	-	-	-	-	-
Alit (M3)	52.2	58.2	59.1	1.9	-	-	-	-	-
Belit (B)	10.8	16.9	13.8	-	-	-	-	-	-
C₂A (kub.)	0.4	0.6	7.6	-	-	-	-	-	-
$C_{2}A$ (ortho)	10.7	2.0	37	-	_	_	-	_	_
C ₄ AF	7 1	11.9	8.2	-	_	_	_	_	_
Aphthitalit	_	0.2	0.7	-	_	_	-	_	_
Arcanit	21	0.2	0.6		_		_	_	_
nortlandite	0.5	0.5	2.5		_	_		_	_
	0.5	0.5	0.3	_	-	_		_	_
MaO	-	-	1.0	-	-	-	-	-	-
Anotoo	5.5	-	1.0	-	-	-	-	-	17
Analas	-	-	-	-	-	-	-	-	1.7
Quarz	0.2	-	-	-	0.6	0.4	0.6	-	0.5
Felospat	-	-	-	-	-	-	-	-	0.5
	-	-	-	-	1.7	-	-	-	-
Genlenit	-	-	-	1.6	0.9	-	-	-	-
Kaolinit	-	-	-	-	-	-	-	-	2.9
Amorph	-	-	-	95.0	/9./	-	-	100.0	94.4
Summe	100.1	100.1	100.0	100.0	100.0	100.0	100.0	100.0	100.0
		OF M I							
RFA Oxid (M%)	CEM I 52,5 R	CEM I 52.5 N	Spritz- zement	HÜS	AHWZ	FCC1	FCC2	SF	МК
RFA Oxid (M%)	CEM I 52,5 R	CEM I 52.5 N SR0	Spritz- zement	HÜS	AHWZ	FCC1	FCC2	SF	MK
RFA Oxid (M%) LOI Na ₂ O	CEM I 52,5 R 3.4	CEM I 52.5 N SR0 2.8	Spritz- zement	HÜS < 0.1	AHWZ 8.0	FCC1	FCC2	SF 0.8	MK
RFA Oxid (M%) LOI Na ₂ O MaQ	CEM I 52,5 R 3.4 0.3 4.0	CEM I 52.5 N SR0 2.8 0.3	Spritz- zement 1.8 0.7 2.0	HÜS < 0.1 0.4 9.4	AHWZ 8.0 0.3 7.1	FCC1 43.1 < 0.1	FCC2 42.6 0.1	SF 0.8 0.1	MK 2.0 < 0.1
RFA Oxid (M%) LOI Na ₂ O MgO	CEM I 52,5 R 3.4 0.3 4.0	CEM I 52.5 N SR0 2.8 0.3 1.1	Spritz- zement 1.8 0.7 2.0 6.1	HÜS < 0.1 0.4 9.4	AHWZ 8.0 0.3 7.1	FCC1 43.1 < 0.1 1.5	FCC2 42.6 0.1 1.5	SF 0.8 0.1 0.2	MK 2.0 < 0.1 < 0.1
RFA Oxid (M%) LOI Na2O MgO Al2O3	CEM I 52,5 R 3.4 0.3 4.0 5.4	CEM I 52.5 N SR0 2.8 0.3 1.1 3.1 21.4	Spritz- zement 1.8 0.7 2.0 6.1 20.6	HÜS < 0.1 0.4 9.4 12.0 37.6	AHWZ 8.0 0.3 7.1 11.5 33.1	FCC1 43.1 < 0.1 1.5 < 0.1	FCC2 42.6 0.1 1.5 0.1	SF 0.8 0.1 0.2 0.2 97.0	MK 2.0 < 0.1 < 0.1 44.7 50.7
RFA Oxid (M%) LOI Na2O MgO Al2O3 SiO2	CEM I 52,5 R 3.4 0.3 4.0 5.4 19.1	CEM I 52.5 N SR0 2.8 0.3 1.1 3.1 21.4	Spritz- zement 1.8 0.7 2.0 6.1 20.6 0.3	HÜS < 0.1 0.4 9.4 12.0 37.6	AHWZ 8.0 0.3 7.1 11.5 33.1	FCC1 43.1 < 0.1 1.5 < 0.1 0.4	FCC2 42.6 0.1 1.5 0.1 1.1	SF 0.8 0.1 0.2 0.2 97.0	MK 2.0 < 0.1 < 0.1 44.7 50.7 < 0.1
RFA Oxid (M%) LOI Na2O MgO Al2O3 SiO2 P2O5	CEM I 52,5 R 3.4 0.3 4.0 5.4 19.1 0.1 2.1	CEM I 52.5 N SR0 2.8 0.3 1.1 3.1 21.4 0.1 2.4	Spritz- zement 1.8 0.7 2.0 6.1 20.6 0.3 1.2	HÜS < 0.1 0.4 9.4 12.0 37.6 < 0.1 2.2*	AHWZ 8.0 0.3 7.1 11.5 33.1 < 0.1	FCC1 43.1 < 0.1 1.5 < 0.1 0.4 < 0.1	FCC2 42.6 0.1 1.5 0.1 1.1 < 0,1	SF 0.8 0.1 0.2 0.2 97.0	MK 2.0 < 0.1
RFA Oxid (M%) LOI Na2O MgO Al2O3 SiO2 P2O5 SO3	CEM I 52,5 R 3.4 0.3 4.0 5.4 19.1 0.1 3.1	CEM I 52.5 N SR0 2.8 0.3 1.1 3.1 21.4 0.1 2.4	Spritz-zement 1.8 0.7 2.0 6.1 20.6 0.3 1.2	HÜS < 0.1 0.4 9.4 12.0 37.6 < 0.1 2.2*	AHWZ 8.0 0.3 7.1 11.5 33.1 < 0.1	FCC1 43.1 < 0.1	FCC2 42.6 0.1 1.5 0.1 1.1 < 0,1	SF 0.8 0.1 0.2 0.2 97.0 -	MK 2.0 < 0.1
RFA Oxid (M%) LOI Na2O MgO Al2O3 SiO2 P2O5 SO3 as S K O	CEM I 52,5 R 3.4 0.3 4.0 5.4 19.1 0.1 3.1 -	CEM I 52.5 N SR0 2.8 0.3 1.1 3.1 21.4 0.1 2.4 -	Spritz-zement 1.8 0.7 2.0 6.1 20.6 0.3 1.2	HÜS < 0.1 0.4 9.4 12.0 37.6 < 0.1 2.2* 0.9*	AHWZ 8.0 0.3 7.1 11.5 33.1 < 0.1	FCC1 43.1 < 0.1 1.5 < 0.1 0.4 < 0.1 < 0.1	FCC2 42.6 0.1 1.5 0.1 1.1 <0.1 <0.1 -	SF 0.8 0.1 0.2 0.2 97.0 - -	MK 2.0 < 0.1
RFA Oxid (M%) LOI Na2O MgO Al2O3 SiO2 P2O5 SO3 as S K2O	CEM I 52,5 R 3.4 0.3 4.0 5.4 19.1 0.1 3.1 - 0.9 60 8	CEM I 52.5 N SR0 2.8 0.3 1.1 3.1 21.4 0.1 2.4 - 0.4 -	Spritz-zement 1.8 0.7 2.0 6.1 20.6 0.3 1.2 - 0.7	HÜS < 0.1 0.4 9.4 12.0 37.6 < 0.1 2.2* 0.9* 1.0 26.5	AHWZ 8.0 0.3 7.1 11.5 33.1 < 0.1	FCC1 43.1 < 0.1 1.5 < 0.1 0.4 < 0.1 < 0.1 - < 0.1 - < 0.1 - < 0.1	FCC2 42.6 0.1 1.5 0.1 1.1 <0.1 <0.1 <0.1 <0.1 <0.1 - <0.1	SF 0.8 0.1 0.2 97.0 - - 0.5 0.3	MK 2.0 < 0.1
RFA Oxid (M%) LOI Na2O MgO Al2O3 SiO2 P2O5 SO3 as S K2O CaO	CEM I 52,5 R 3.4 0.3 4.0 5.4 19.1 0.1 3.1 - 0.9 60.8 0.2	CEM I 52.5 N SR0 2.8 0.3 1.1 3.1 21.4 0.1 2.4 - 0.4 63.7 0.2	Spritz-zement 1.8 0.7 2.0 6.1 20.6 0.3 1.2 - 0.7 63.4 0.2	HÜS < 0.1	AHWZ 8.0 0.3 7.1 11.5 33.1 < 0.1	FCC1 43.1 < 0.1 1.5 < 0.1 0.4 < 0.1 < 0.1 <	FCC2 42.6 0.1 1.5 0.1 1.1 < 0,1 < 0,1 - < 0,1 54.6 - 0.1	SF 0.8 0.1 0.2 97.0 - - 0.5 0.3	MK 2.0 < 0.1
RFA Oxid (M%) LOI Na2O MgO Al2O3 SiO2 P2O5 SO3 as S K2O CaO TiO2	CEM I 52,5 R 3.4 0.3 4.0 5.4 19.1 0.1 3.1 - 0.9 60.8 0.2	CEM I 52.5 N SR0 2.8 0.3 1.1 3.1 21.4 0.1 2.4 - 0.4 63.7 0.2	Spritz-zement 1.8 0.7 2.0 6.1 20.6 0.3 1.2 - 0.7 63.4 0.3 0.4	HÜS < 0.1	AHWZ 8.0 0.3 7.1 11.5 33.1 < 0.1	FCC1 43.1 < 0.1 1.5 < 0.1 0.4 < 0.1 < 0.1 - < 0.1 54.8 < 0.1 0.4	FCC2 42.6 0.1 1.5 0.1 1.1 < 0,1 < 0,1 - < 0,1 54.6 < 0,1 0.1	SF 0.8 0.1 0.2 97.0 - - 0.5 0.3 -	MK 2.0 < 0.1
RFA Oxid (M%) LOI Na2O MgO Al2O3 SiO2 P2O5 SO3 as S K2O CaO TiO2 MnO	CEM I 52,5 R 3.4 0.3 4.0 5.4 19.1 0.1 3.1 - 0.9 60.8 0.2 <0.1 2.7	CEM I 52.5 N SR0 2.8 0.3 1.1 3.1 21.4 0.1 2.4 - 0.4 63.7 0.2 -	Spritz-zement 1.8 0.7 2.0 6.1 20.6 0.3 1.2 - 0.7 63.4 0.3 0.1	HÜS < 0.1	AHWZ 8.0 0.3 7.1 11.5 33.1 < 0.1	FCC1 43.1 < 0.1	FCC2 42.6 0.1 1.5 0.1 1.1 < 0,1	SF 0.8 0.1 0.2 0.2 97.0 - - 0.5 0.3 - - 0.5 0.3	MK 2.0 < 0.1
$\begin{array}{c} \textbf{RFA} \\ \hline \textbf{Oxid} (\textbf{M\%}) \\ \hline \textbf{LOI} \\ Na_2 O \\ Mg O \\ Al_2 O_3 \\ Si O_2 \\ P_2 O_5 \\ SO_3 \\ as S \\ K_2 O \\ Ca O \\ Ti O_2 \\ Mn O \\ Fe_2 O_3 \\ \hline \textbf{Ca O} \\ Te_2 O_3 \\ \hline \textbf{Ca O} \\ Ti O_2 \\ Mn O \\ Fe_2 O_3 \\ \hline \textbf{Ca O} \\ Te_2 O_3 \\ \hline \textbf{Ca O} \\ \hline \textbf{Ca O} \\ Ti O_2 \\ \hline \textbf{Ca O} \\ \hline \textbf$	CEM I 52,5 R 3.4 0.3 4.0 5.4 19.1 0.1 3.1 - 0.9 60.8 0.2 <0.1 2.7 2.7	CEM I 52.5 N SR0 2.8 0.3 1.1 3.1 21.4 0.1 2.4 - 0.4 63.7 0.2 - 4.5	Spritz-zement 1.8 0.7 2.0 6.1 20.6 0.3 1.2 - 0.7 63.4 0.3 0.1 2.8	HÜS < 0.1	AHWZ 8.0 0.3 7.1 11.5 33.1 < 0.1	FCC1 43.1 < 0.1	FCC2 42.6 0.1 1.5 0.1 1.1 < 0,1	SF 0.8 0.1 0.2 0.2 97.0 - - 0.5 0.3 - 0.0 0.0	MK 2.0 < 0.1
RFA Oxid (M%) LOI Na2O MgO Al2O3 SiO2 P2O5 SO3 as S K2O CaO TiO2 MnO Fe2O3 Summe	CEM I 52,5 R 3.4 0.3 4.0 5.4 19.1 0.1 3.1 - 0.9 60.8 0.2 <0.1 2.7 99.8	CEM I 52.5 N SR0 2.8 0.3 1.1 3.1 21.4 0.1 2.4 - 0.4 63.7 0.2 - 4.5 99.9	Spritz-zement 1.8 0.7 2.0 6.1 20.6 0.3 1.2 - 0.7 63.4 0.3 0.1 2.8 100.0	HÜS < 0.1 0.4 9.4 12.0 37.6 < 0.1 2.2* 0.9* 1.0 36.5 0.5 1.3 0.4 100.0	AHWZ 8.0 0.3 7.1 11.5 33.1 < 0.1 - 1.0 36.2 0.5 1.0 1.1 99.9	FCC1 43.1 < 0.1 1.5 < 0.1 0.4 < 0.1 - < 0.1 - < 0.1 - < 0.1 - < 0.1 - < 0.1 99.8	FCC2 42.6 0.1 1.5 0.1 1.1 < 0,1 - < 0,1 54.6 < 0,1 0.1 0.1 100.0	SF 0.8 0.1 0.2 0.2 97.0 - - 0.5 0.3 - 0.0 98.9	MK 2.0 < 0.1 < 0.1 44.7 50.7 < 0.1 < 0.1 - < 0.1 - < 0.1 - < 0.1 - < 0.1 - < 0.1 0.6 99.7
$\begin{array}{c} \textbf{RFA} \\ \hline \textbf{Oxid} (\textbf{M\%}) \\ \hline \textbf{LOI} \\ Na_2 O \\ Mg O \\ Al_2 O_3 \\ Si O_2 \\ P_2 O_5 \\ SO_3 \\ as S \\ K_2 O \\ Ca O \\ Ti O_2 \\ Mn O \\ Fe_2 O_3 \\ Summe \end{array}$	CEM I 52,5 R 3.4 0.3 4.0 5.4 19.1 0.1 3.1 - 0.9 60.8 0.2 <0.1 2.7 99.8 CEM I 52,5 R	CEM I 52.5 N SR0 2.8 0.3 1.1 3.1 21.4 0.1 2.4 - 0.4 63.7 0.2 - 4.5 99.9 CEM I 52.5 N SR0	Spritz-zement 1.8 0.7 2.0 6.1 20.6 0.3 1.2 - 0.7 63.4 0.3 0.1 2.8 100.0 Spritz-zement	HÜS < 0.1	AHWZ 8.0 0.3 7.1 11.5 33.1 < 0.1	FCC1 43.1 < 0.1	FCC2 42.6 0.1 1.5 0.1 1.5 0.1 1.5 0.1 1.5 0.1 1.5 0.1 <0,1	SF 0.8 0.1 0.2 97.0 - - 0.5 0.3 - 0.0 98.9 SF	MK 2.0 < 0.1
RFA Oxid (M%) LOI Na2O MgO Al2O3 SiO2 P2O5 SO3 as S K2O CaO TiO2 MnO Fe2O3 Summe Spez. Oberfläche (Blaine, cm ² g ⁻¹)	CEM I 52,5 R 3.4 0.3 4.0 5.4 19.1 0.1 3.1 - 0.9 60.8 0.2 <0.1 2.7 99.8 CEM I 52,5 R 4300	CEM I 52.5 N SR0 2.8 0.3 1.1 3.1 21.4 0.1 2.4 - 0.4 63.7 0.2 - 4.5 99.9 CEM I 52.5 N SR0 4200	Spritz-zement 1.8 0.7 2.0 6.1 20.6 0.3 1.2 - 0.7 63.4 0.3 0.1 2.8 100.0 Spritz-zement 4000	HÜS < 0.1	AHWZ 8.0 0.3 7.1 11.5 33.1 < 0.1	FCC1 43.1 < 0.1	FCC2 42.6 0.1 1.5 0.1 1.5 0.1 1.5 0.1 1.5 0.1 1.5 0.1 1.5 0.1 <0,1	SF 0.8 0.1 0.2 97.0 - - 0.5 0.3 - 0.0 98.9 SF **	MK 2.0 < 0.1
$\begin{array}{c} \textbf{RFA} \\ \hline \textbf{Oxid (M\%)} \\ \hline LOI \\ Na_2O \\ MgO \\ Al_2O_3 \\ SiO_2 \\ P_2O_5 \\ SO_3 \\ as S \\ K_2O \\ CaO \\ TiO_2 \\ MnO \\ Fe_2O_3 \\ Summe \\ \hline \end{array}$	CEM I 52,5 R 3.4 0.3 4.0 5.4 19.1 0.1 3.1 - 0.9 60.8 0.2 <0.1 2.7 99.8 CEM I 52,5 R 4300 1.32	CEM I 52.5 N SR0 2.8 0.3 1.1 3.1 21.4 0.1 2.4 - 0.4 63.7 0.2 - 4.5 99.9 CEM I 52.5 N SR0 4200 0.96	Spritz-zement 1.8 0.7 2.0 6.1 20.6 0.3 1.2 - 0.7 63.4 0.3 0.1 2.8 100.0 Spritz-zement 4000 1.03	HÜS < 0.1	AHWZ 8.0 0.3 7.1 11.5 33.1 < 0.1	FCC1 43.1 < 0.1	FCC2 42.6 0.1 1.5 0.1 1.5 0.1 <0,1	SF 0.8 0.1 0.2 97.0 - - 0.5 0.3 - 0.0 98.9 SF ** 18.00	МК 2.0 < 0.1

Tabelle 4: Zusammensetzung und spezifische Oberfläche der Zemente und Zusatzstoffe.

Oxid	T1		T2		тз		Τ4		Т5		Т6		Т7	
(M%)	davor	da- nach												
LOI	40.5	41.6	40.1	41.0	40.4	41.4	41.2	41.8	39.1	40.4	39.9	40.9	39.6	39.7
Na ₂ O	0.1	0.1	0.1	0.1	0.1	0.1	0.1	<0.1	0.1	0.1	0.1	0.1	0.1	0.1
MgO	17.3	17.4	16.9	16.9	17.1	17.3	17.5	17.5	17.0	16.2	17.3	17.0	16.9	16.4
Al ₂ O ₃	1.2	1.2	1.5	1.4	1.3	1.4	1.3	1.3	2.0	2.0	1.7	1.6	2.2	2.1
SiO ₂	4.2	4.1	5.1	4.8	4.5	4.5	4.5	4.2	5.1	4.9	5.6	5.6	5.5	5.2
SO ₃	0.2	1.8	0.2	1.8	0.3	1.8	0.3	1.9	0.2	2.7	0.3	1.7	0.3	2.9
K ₂ O	0.1	0.1	0.1	0.1	0.1	0.1	0.1	<0.1	0.1	0.1	0.1	0.1	0.1	0.1
CaO	35.7	33.4	35.2	33.4	35.4	33.0	34.4	32.7	35.6	33.2	34.4	32.5	34.7	33.1
TiO ₂	0.1	0.1	0.1	0.1	0.1	0.1	<0.1	<0.1	0.1	0.1	0.1	0.1	0.1	0.1
Fe ₂ O ₃	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.5	0.5	0.4	0.4	0.5	0.4
Summe	99.9	100.1	99.9	100.1	99.9	100.0	99.9	99.9	99.8	100.1	99.9	100.0	99.9	100.0
Phase	T1		T2		Т3		T4		Т5		Т6		T7	
(M%)	davor	da- nach												
Dolomit	76.5	75.3	74.2	72.1	77.2	74.7	79.2	77.4	74.8	69.4	76.8	72.9	74.5	66.1
Calcit	5.6	10.4	5.8	11.3	5.1	11.4	7.1	11.3	5.1	13.5	5.7	12.3	4.2	10.2
Portlandit	4.4	-	3.7	-	3.1	-	2.8	-	2.1	-	1.9	-	2.5	-
Ettringit	-	8.5	-	9.9	-	8.7	-	8.9	-	8.3	-	7.7	-	16.6
Quarz	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.5	0.1	0.1
AFm	1.3	0.1	1.9	0.2	1.0	0.1	1.9	1.0	1.0	-	0.9	0.1	2.2	-
Brucit	-	-	-	-	-	-	0.3	0.2	-	-	-	-	-	-
Belit	0.8	0.2	0.3	0.2	0.3	0.3	-	-	0.7	0.3	0.7	-	0.4	0.3
C ₄ AF	0.3	-	-	-	-	-	0.6	-	-	-	-	-	-	-
Gips	-	-	-	-	-	-	-	-	-	1.0	-	-	-	-
Amorph	11.2	5.4	14.1	6.2	13.1	4.9	8.2	1.1	16.1	7.3	13.8	6.7	16.1	6.5
Summe	100.1	100.0	100.1	100.0	99.9	100.1	100.0	100.0	99.9	100.0	100.0	100.1	100.0	99.8

Tabelle 5: Chemische und mineralogische Zusammensetzung der untersuchtenTrockenspritzbetone vor und nach dem Pulvertest.

Oxid N1		N2		N3		N4		N5		N6		N7		N8			
(M%)	davor	da- nach															
LOI	42.0	42.4	41.9	41.9	42.4	43.5	41.5	42.5	42.7	43.0	42.8	43.0	42.3	42.5	42.1	42.4	
Na ₂ O	-	<0.1	<0.1	-	-	-	<0.1	-	-	-	-	-	<0.1	-	-	-	
MgO	18.4	18.6	18.8	18.7	18.5	18.8	18.4	18.4	18.7	18.9	18.8	18.7	18.2	18.3	18.2	18.0	
Al ₂ O ₃	1.3	1.3	1.8	1.8	0.8	0.8	1.2	1.3	1.1	1.1	1.2	1.2	1.6	1.4	1.4	1.4	
SiO ₂	4.3	4.2	4.7	4.8	3.7	3.5	3.7	3.7	4.2	4.0	4.2	4.3	4.1	3.8	4.4	4.2	
SO₃	0.7	1.4	0.7	1.5	0.7	1.2	0.9	1.8	0.6	1.1	0.7	1.2	0.8	1.8	0.8	1.6	
K ₂ O	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	0.1	-	0.1	<0.1	0.1	<0.1	0.1	<0.1	<0.1	<0.1	
CaO	32.7	31.2	31.4	30.7	33.4	31.7	33.7	31.8	32.2	31.4	31.9	31.2	32.4	31.8	32.4	31.7	
TiO ₂	<0.1	<0.1	<0.1	<0.1	-	-	-	<0.1	<0.1	<0.1	-	-	<0.1	<0.1	<0.1	-	
Fe ₂ O ₃	0.6	0.6	0.4	0.5	0.6	0.5	0.4	0.4	0.3	0.3	0.3	0.4	0.4	0.3	0.5	0.5	
Sum- me	99.9	99.9	99.9	99.9	100.0	100.0	99.9	100.0	100.0	100.0	99.9	99.9	99.9	99.9	99.9	99.9	
Phase	N	1	N2		N3		N4		N5		N	N6		N7		N8	
(M%)	davor	da- nach															
Dolo- mit	83.0	84.2	81.7	81.2	83.5	85.1	80.8	81.1	82.4	83.1	83.9	83.5	79.9	80.3	81.1	80.0	
Calcit	3.0	5.7	3.4	5.7	3.4	7.5	3.3	7.6	6.3	9.5	5.3	8.5	4.9	9.1	5.1	9.9	
Port- landit	2.2	-	0.7	-	2.3	-	2.3	-	0.4	-	0.1	-	0.3	-	0.9	-	
Ettrin- ait	2.0	4.9	1.5	4.7	1.2	3.4	1.8	7.4	1.1	2.5	1.5	3.5	1.8	5.4	1.3	3.6	
Quarz	0.3	0.2	0.5	0.5	0.2	0.1	0.1	0.1	0.2	0.1	0.1	0.5	0.1	0.3	0.3	0.3	
AFm	1.7	0.5	1.9	0.6	0.8	0.4	1.8	0.7	0.9	0.4	0.9	0.5	2.7	0.6	1.8	0.6	
Brucit	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Belit	0.9	0.5	0.6	0.1	1.0	0.2	1.2	0.6	0.8	0.6	0.7	0.1	0.7	0.2	1.0	0.3	
C₄AF	0.7	0.5	0.5	0.5	0.7	0.5	0.5	0.5	0.5	0.4	0.5	0.4	0.6	0.5	0.3	0.3	
Gips	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
A- morph	6.3	3.5	9.2	6.8	6.8	2.8	8.1	2.0	7.5	3.4	7.1	3.0	8.8	3.6	8.1	5.0	
Sum- me	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	

Tabelle 6: Chemische und mineralogische Zusammensetzung der untersuchtenNassspritzbetone vor und nach dem Pulvertest.